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We present a first principles theory of the temperature dependence of 
the Urbach optical absorption edge in crystals and disordered semi- 
conductors which incorporates the effects of short range correlated 
static disorder and the non-adiabatic quantum dynamics of the coupled 
electron-phonon system. At finite temperatures the dominant features 
of the Urbach tail are accounted for by multiple phonon absorption 
and emission side bands which accompany the optically induced elec- 
tronic transition and which provide a dynamic polaronic potential well 
that localizes the electron. Excellent agreement is found with experi- 
mental data on both crystalline and amorphous silicon. 

THE URBACH optical absorption edge [1] in crystal- 
line and amorphous semiconductors and insulators 
has posed a long standing unsolved problem in theor- 
etical solid state physics. This involves optically 
induced electronic transitions from the valence-to 
conduction-band tail of the solid. For photon energies 
fiv below the band gap energy, the optical absorption 
coefficient takes the form 

~(v) ,,~ exp [(fly - Ea(T))/Eo(T)] (1) 

where Ea and E0 are temperature dependent fitting 
parameters. Here Ea is comparable to the band gap 
energy and E0 is typically in the range 10-100 meV for 
amorphous semiconductors. Although a theoretical 
foundation [2-15] for understanding this simple and 
universal behavior has been established, many fun- 
damental issues remain. The observed linearity of 
the edge may be accounted for by the proper incor- 
poration of short range order in the disorder whether 
static or dynamic. The sensitivity to short range 
correlations was first reported by Sritrakool et al. [11] 
and studied in depth in [15]. For a Gaussian random 
potential V(x) with autocorrelation of the form 
B(x) - (V(x)V(O))ens = V~s exp (-Ix[/L) it was 
shown by Halperin and Lax that the one-electron 
density of states (DOS) does not exhibit a significant 
Urbach tail for reasonable choices of the correlation 
length L. On the other hand, the function B(x) = 
V~2ms exp ( - x 2 / L  2) does give rise to a linear expo- 
nential edge over five decades in an energy range up to 
0.5 eV for L close to the interatomic spacing of the 
solid [9, l l, 15]. The simplicity of Urbach's rule is 
manifest in a simple potential well picture [9] for 
electronic localization. The universality of the linear 

exponential edge is essentially the universality of short 
range order in disordered solids. These results are 
also consistent with the pioneering work of Dow and 
Redfield who showed that in a different class of solids 
with long range correlated randomness entirely new 
physics associated with exciton formation must be 
added to this simple one-electron picture to under- 
stand the optical absorption edge. 

Based on this foundation, some aspects of the 
temperature dependence of the Urbach edge can be 
heuristically explained by modelling the quantum and 
thermal lattice vibrations by means of a classical 
frozen field [5, 6]. This provides a good description 
at high temperatures. The physical picture is that 
thermal fluctuations prepare the lattice polarization 
and that the resulting static potential wells localize the 
electron in band tail states as before. In this Letter we 
present a more fundamental solution to this issue 
which goes beyond this static picture. By properly 
incorporating the quantum dynamics of the lattice 
and the possibility of the electron to drive quantum 
mechanical phonon absorption and emission pro- 
cesses we find that three salient features of the absorp- 
tion edge can be simultaneously accounted for with 
essentially no free or truly adjustable parameters. 
These are (i) linearity of the exponential edge over 5 
decades, (ii) the linear relationship between EG(T) and 
Eo(T) and (iii) the temperature independent Urbach 
focus. (see Fig. 1 and 2). Our theory predicts the 
existence of Urbach tails in both direct and indirect 
gap crystals at finite temperature and also suggests 
that a fundamental change may occur in the effective 
electron-phonon coupling between crystals and 
amorphous semiconductors. 
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Fig. 1. Absorption coefficient in crystalline silicon 
(relative to its value at hv = I. 1 eV for c-Si at 350 K) 
as a function of  energy below the shifted indirect 
continuum edge at E - - 0.1 eV for various tempera- 
tures. Accurate linear exponential Urbach behavior 
begins to occur only at E - - 0.3 eV at 350 K and at 
the unobservably low energy E = - 0.5 eV at 150 K. 
Theoretically it extends at least 0.5eV below these 
energies. The upper insert shows E0 vs temperature. 
The lower insert contains a plot of  the downshift Eo of  
the continuum edge vs Urbach slope E0. For  high 
temperatures their relationship becomes linear. 
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Fig. 2. Absorption coefficient for various tempera- 
tures in hydrogenated amorphous  silicon. The con- 
tinuum edge occurs approximately at the left of  each 
curve. Linear Urbach behavior occurs over energy 
ranges - 0 . 6  ~> E ~> - 1 . 1 e V  at 10K and - 0 . 8  >~ 
E ~> - 1.3 eV at 300 K. The solid curve at the bot tom 
of  the upper  insert is the computed Urbach slope E0 vs 
temperature K for a - S i : H .  Superimposed (dashed 
curve) is the experimentally observed slope (Tiedje 
et al.). The energy scale for these curves is at the left 
of  the insert. Also shown is the downshift of  the con- 
tinuum Eo (energy scale on right of  insert). The lower 
insert shows Eo vs E0 displaying a linear relationship 
for T~> 100K. 

In the present context we neglect electron-hole 
correlations, excitonic effects and the associated 
energy dependence of  the optical dipole transition 
matrix elements. Final state interactions, although of 
importance in materials such as the alkali-halides 
[4], play only a minor role in the determination of 
the absorption edge in crystalline silicon (c-Si) and 
hydrogenated amorphous silicon a-Si : H. In general, 
whenever the exciton binding energy is small com- 
pared to the scale of  disorder, whether static or 
dynamic, the exciton line is smeared by the shift of  the 
conduction band continuum. 

In a continuum effective mass approximation for 
the electron dynamics, we take as our Hamiltonian for 
the coupled electron lattice system H = p2/2rn* + 
V(x)  + He ~, + H~,, where p and m* are the elec- 
tron crystal momentum and average effective mass 
respectively in the conduction band, V(x)  is a corre- 
lated Gaussian random potential with mean value 
zero and a Gaussian autocorrelation function B(x) = 
( V ( x ) V ( O ) ) e n  s == Vr~2s e - x 2 / L 2 .  The electron-acoustic 
phonon interaction is taken to be 

= eik  • x 
He_a c Ed Z ?h - -  (2a) 

u , 

where Ed is the deformation potential energy, u is the 
speed of  sound, qk is a normal coordinate of  the lattice 
describing the amplitude of  a longitudinal acoustic 
disturbance with wavevector k, x is the electron coor- 
dinate and Na is the total number of  atoms in the crys- 
tal. Here the wavevector sum runs over the Brillouin 
zone of the crystal. Finally, Ha, represents the har- 
monic lattice Hamiltonian for atoms of mass M and 
for acoustic phonons with a linear dispersion relation- 
ship 09 k = uk. In the continuum approximation 
it is convenient to replace the wavevector sum by a 
Brillouin zone volume preserving integral [16]. For a 
cubic crystal of  lattice constant a, the wavevector cut- 
off function may be chosen to be exp ( -  n/4(k/ko) 2) 
where ko = n/a. This choice is particularly suitable 
for the description of disordered systems in which 
there is a smearing of the crystalline Brillouin zone. 

The optical absorption coefficient is related to 
the imaginary part  of  the dielectric constant by the 
relation ~(v) = v/c(e2(v)/n), where n is the real part  of  
the refractive index. In a one-electron model this is 
given by [17] 

e2(v) = (2rte) 2 2 ~  Qi(fl)JRi.fJa~fflv -t- Ei - e:). 
t,J, 

(3) 

Here fl- I/(kaT) and we have introduced the 
Boltzmann weight Qi(fl) = e pe~/(~ e-#e,) describing 
the probability that the system is in an initial state i. 
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The dipole matrix element takes the form R~.f = 
(~bIlt • xl~bi) where x is the electron coordinate and 
the polarization vector of the photon. It is straight- 
forward to generalize this one-electron expression to 
approximate the many-body dynamics of a coupled 
electron-phonon system. This simplest model which 
contains the relevant physics is obtained by choosing 
the initial state manifold to consist of a single strongly 
localized electronic level at energy -Egap  which is 
completely decoupled from the phonons described by 
the Hamiltonian H~,. We do not consider electron 
dynamics in the initial state. The final state mani- 
fold consists of the electron in the conduction band 
coupled to the phonon field and the static random 
potential. The energy E i is an eigenvalue of the 
full Hamiltonian H. The dipole matrix element is 
interpreted in an adiabatic approximation: the many 
body wavefunction in the final state may be factored 
into a product of the lattice wavefunction and the 
electronic wavefunction ~y (x). In the remainder of the 
calculation, however, the full nonadiabatic quantum 
dynamics of the many body system will be incor- 
porated. In our model, the physical mechanisms 
for the production of valence and conduction band 
tails are the same. If the magnitude of the electron 
effective masses, the deformation potentials, and static 
disorder strengths and correlation lengths were the 
same in the valence and conduction bands this model 
would predict a DOS due to valence and conduction 
band tails which is symmetrical about the middle of 
the band gap. In recognition of the fact that some 
materials have their optical absorption dominated by 
a single band tail, a consequence of different physical 
parameters in the two band tails, our model considers 
absorption dominated by the conduction band tail. 
Due to the symmetry of the DOS about the middle of 
the gap, our model should also be valid for materials 
such as Si in which the absorption is dominated by the 
valence band tail. 

Evaluation of (3) is facilitated by the integral rep- 
resentation of the energy conserving delta function: 

or(v) ,,~ f ~ ei(~-e~P/h)tg(t) (4a) 

where the generating function 

g(t) = ~ (ile-(~-it/~)n~Rlf)( fle-im/~Rli ). (4b) 
i,f 

A Feynman path-integral representation of g(t) 
follows from a coordinate space representation Ix; 
{qk}) of the state vectors. In a true many-electron 
formulation, the operator R would include the effect 
of electron-hole correlations. In our simple one- 
electron model the electron is initially localized at the 

origin and since we are considering optical excitation 
into localized conduction band tail states, the domi- 
nant effect of R is to restrict the electron coordinate to 
x = 0 in the final state. Neglecting all other depen- 
dence of Ri,f on f, it may be factored out of the 
summation in (4b). The first matrix element is that 
of a free harmonic oscillator and may be evaluated 
exactly. The second matrix element involving the full 
Hamiltonian H may be represented by a path-integral. 
Integrating over phonon coordinates yields, after a 
straightforward but tedious calculation: 

g(t) ~ ~ ~X(Z) e (i/~)s~rf (5a) 
x(O)=x(t)=O 

where 

Soff = Se + Sint + S~is, 

m* 
i x2 ('c) dr (5b) S e = T 0  

s~.t i i  1 dr dr' ~ ~ e ik'(~(~)-~(~')) huko Saci~k 
o o 2 
x [(N(cok) + 1)e im, lz-z'l ..[_ N(~ok)eiO~kix-r'l] 

(5c) 
and 

i dr dr'B(x(r) - x(r')). (5d) Sdis ~-~ ~ 0  

Here, we have introduced the phonon occupation 
number N(~ok) -- (e/~'~ -- 1). An ensemble average over 
the static Gaussian random potential V(x) has been 
performed to obtain Sdis- The dimensionless electron- 
acoustic phonon coupling constant is defined by the 
relation huk~Sac = E~ /(2gu2). 

The term involving N(~ok) + 1 in Sint corresponds 
to optical transitions accompanied by the emission of 
a phonon of energy htok. Such processes cost elastic 
energy and the photon energy hv must be made 
accordingly higher. At zero temperature this emission 
process gives rise to polaronic states if the coupling So~ 
is sufficiently strong. This density of coupled electron- 
lattice states has recently been shown to give rise to an 
Urbach tail in the strong coupling limit [13]. However, 
due to the elastic energy cost of deforming the lattice, 
this tail terminated at the polaron ground state. For 
small Sac, no band tail occurs at zero temperature. 
Such states, however, could be nucleated by static 
disorder even for Sac below polaron threshold, giving 
rise to a synergetic interplay between disorder induced 
localization and polaron formation [14]. It is apparent 
from (5c) that at finite temperature, thermal fluctu- 
ations will likewise enhance the phonon emission 
amplitude. The entirely new feature in our model 
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arises from the term N(o9k)e i°'*l'-~'r. This describes 
phonon assisted optical transitions in which a phonon 
of  frequency o9, is absorbed from the heat bath. 
Since elastic energy is provided by the heat bath, it is 
apparent that multiple phonon absorption can give 
rise to an infinite tail in the optical absorption spec- 
trum below the conduction band edge even in the 
absence of static disorder. That is to say, by absorbing 
an appropriate set of phonons from the temperature 
bath and emitting them into a surrounding polaronic 
cloud the electron can dig its own potential well and 
form a localized conduction band tail state without 
paying the elastic energy cost it would have to at 
T = 0. A process of  this nature involving n_ phonons 
absorbed and n+ phonons emitted is apparent from 
the (n+ + n )th order term in the power series expan- 
sion of  e ~"'~. 

Evaluation of the path-integral (5a) is facilitated 
by introducing a trial harmonic action Stn,j corre- 
sponding to the electron coupled by a classical spring 
of stiffness Ktr~a~ to a fictitious mass Mtna~ simulating the 
phonon cloud. This trial action implies that the 
phonons have a Gaussian wavefunction. A first cumu- 
lant expansion of  the true action S~fr about Stn~ is 
performed. This variational procedure as well as 
its high degree of accuracy in comparison to other 
methods has been discussed previously [10, 11, 13-16]. 
A detailed derivation including a comparison with 
most probable static potential well methods will be 
presented elsewhere [18]. 

For  the case of crystalline silicon, we set Vr~ = 0. 
A straightforward rescaling of all lengths by k0 ~ 
and time by (uko) -~ reveals that the dimensionless 
input parameters in the evaluation of  the generating 
function g(t)  are the electron-phonon coupling con- 
stant Sac and the non-adiabaticity parameter 7 = 
( f i u k o ) / ~ 2 ~ / 2 m * ) .  For c-Si fiuko ~- 0.054eV [19], the 
average speed of  sound u - 8.4 x 103ms 1 [20] and 
the conduction band average effective mass is m* ~- 1. 
1 m e [21] where m e is the bare electron mass. Also the 
valence band deformation potential is known to be 
Ea ~- 11.3 eV [22]. It follows that Sac "~ 28.8 and 
7 ~ 0.016. Figure 1 shows numerically evaluated 
Urbach tails in the range T = 150 to 350K. Com- 
prehensive measurements of  ~(v) by Cody et al. [23] 
at 300 K in c-Si reveal an Urbach slope of E0 = 
8.5 ___ 1.0meV in the vicinity of the indirect edge 
1.0 < fiv < 1.1 eV. Our theory, which contains no 
free parameters, yields accurate linear exponential 
behavior with a slope of  E0 = 8.6meV. The elec- 
tron crystal momentum k-selection rule has been sup- 
pressed here since the electronic wavefunctions are 
strongly localized. It would be nevertheless be of  
interest to ~eneralize this continuum effective mass 
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model to capture both the direct and indirect edge of  
c-Si. 

For  amorphous semiconductors in the static limit, 
for high temperatures and static disorder correlation 
length close to the phonon correlation length, we can 
analytically solve for the absorption coefficient (1) 
in the Urbach regime, obtaining E a ( T ) ~  Egap- 
V~2ms/2eL - rcSaHksT/x /2  and  E o ( T  ) ~ V~s/14.5et  + 
Sacykn T/3.26, where fiuko = flog0 is the Debye energy, 
and et - fi2/2m*L2. These results are in close agree- 
ment with those in [9]. These expressions give an 
approximation to ~, however the greatest lower bound 
to the true absorption coefficient can only be obtained 
numerically through the relaxation of the above limit- 
ing assumptions. 

For  a -S i :H,  independent measurements of all 
of  the input parameters are not yet available. For 
convenience we choose ~ to have the same value as 
in c-Si and the correlation length L for the static 
random potential to be equal to the lattice constant. 
Sac and V~ms of  a - S i : H  were then uniquely deter- 
mined by matching the observed temperature depen- 
dence of E0 with our theoretical model, yielding 
Vrms ~ 0.41 eV and Sac ~- 220. A detailed compari- 
son between our theory and measurements of  Tiedje 
et al. [24] is presented in Fig. 2. The Urbach focus 
is temperature independent and E0 and Eo are 
linearly related at high temperatures. At low tem- 
peratures our theory predicts deviations from linearity 
characteristic of  the true quantum nature of the lattice 
vibrations. 

We note finally the large change in the coupling 
Sac from its crystalline value. Although some amount 
of  freedom is available in the choice of~ and hence Vr~s 
and Sac, we find that for all choices, the effect of 
disorder is to move the electron-phonon coupling 
closer to small polaron threshold than in the corre- 
sponding crystal. Whether or not this represents a 
fundamental physical difference between amorphous 
and crystalline materials is an interesting open ques- 
tion. Resolution of  this question requires a better 
understanding of the role of real band structure 
effects, higher order corrections in the electron- 
phonon coupling and the effects of  disorder on the 
phonon spectrum which our simple model neglects. It 
is nevertheless noteworthy that even a very simple 
model when solved accurately with highly controlled 
approximations can quantitatively account for many 
experimentally observed features of  these complex 
materials. 
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